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ABSTRACT

Driving in a state of drowsiness is a major cause of road ac-
cidents, resulting in tremendous damage to life and property.
Developing robust, automatic, real-time systems that can infer
drowsiness states of drivers has the potential of making life-
saving impact. However, real-world drowsy driving datasets
are unbalanced, due to the sparsity of drowsy driving events.
We focus on the problem of alleviating the class imbalance
problem by using generative adversarial networks (GAN) to
synthesize examples of sparse classes directly in the feature-
space. Our GAN-based framework simultaneously generates
realistic examples of sparse classes while using the generated
samples to improve the performance of a separate drowsiness
classifier. We validate this approach in a real-world drowsi-
ness dataset, where we demonstrate a classifier trained us-
ing this approach outperforms a stand-alone classifier trained
without any GAN-based augmentations.

Index Terms— Drowsiness Detection, Facial Expres-
sions, GAN, Feature Synthesis, Joint Optimization

1. INTRODUCTION

The success of deep learning has been fueled by the avail-
ability of large amounts of labeled training data. However,
for certain applications, collecting and curating real-world
datasets that are of the requisite size and diversity is chal-
lenging. Furthermore, due to the sparsity of tail events,
maintaining balance of samples across classes of interest can
be difficult. In this paper, we focus on alleviating the class
imbalance problem by using GANs [!] to synthesize exam-
ples of sparse classes in the feature-space.

Consider the problem of driver drowsiness detection.
Drowsy driving is dangerous, causing accidents that kill or
injure thousands of people every year [2]. Equipping vehi-
cles with systems that can accurately detect driver drowsiness
can be potentially life-saving. Robust drowsiness detection
methods are dependent on training models on data that are
representative of naturalistic drowsy driving behavior. Most
technologies deployed in the automotive industry to detect
driver fatigue rely on vehicular behavior, such as distance
from lane markers on the road or steering behavior [3]. Ar-
guably, a richer source of signal depicting drowsy behavior
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is the face of the driver. Such a drowsiness detection system
was proposed in [4], where a CNN was trained on a dataset of
overnight shiftworkers representing real-world drowsy driv-
ing behavior. Instead of image pixels, the CNN was trained
on 18 facial features (eye closure, yawn, pose, etc.) generated
by the Affdex SDK [5], accumulated over a set of frames. We
train our models on this severely unbalanced dataset, demon-
strating model improvement by augmenting sparse classes
using a novel GAN-based joint training scheme.

The problem of unbalanced training classes is also very
common in computer vision datasets, especially for face
images, as shown in [6]. To augment the sparsely populated
classes, researchers have synthesized artificial data that mimic
features of the real samples from these classes. For example,
the same facial texture can be reposed with 3D models to add
more variation in facial pose and shape [0, 7]. GAN-based
models have also been successfully deployed to generate hi-
res synthetic face images [8] or edit visual attributes like age
[9], lighting and pose [10], gender and expressions [ 1].

Unlike these works, we do not focus on hallucinating
actual pixels of drowsy face images. Instead, we directly
generate the n-dimensional feature vectors describing the
drowsiness state of a video sample, similar to [4]. To directly
synthesize such features from random noise, we define a
novel objective function for GAN training that keeps track of
the correlation between synthetic and actual samples to pre-
serve naturalness and add diversity, while pushing different
drowsy classes apart in feature space. Furthermore, our GAN
framework jointly optimizes the final drowsiness classifier,
along with the generator and discriminator. That is, signal
from the classifier is utilized as an additional objective to
improve the quality of the generated samples during training.

We demonstrate the effectiveness of our framework in
mitigating bias in the challenging drowsiness dataset from
[4], which suffers from severe class imbalance. The GAN
based joint training not only boosts classifier performance for
the targeted drowsy classes but improves inter-class separa-
tion between samples from all the existing classes.

2. AUGMENTING SPARSE TRAINING CLASSES
USING GENERATIVE ADVERSARIAL NETWORKS

The dataset introduced in [4] contains real-world data an-
notated with 3 drowsiness levels: ‘Alert’, ‘Slightly drowsy’
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Fig. 1: Our GAN framework: G synthesizes features for a target drowsiness class from random noise, while D is trained with both synthetic and real drowsy
features to predict the naturalness of generated samples and validate their drowsiness class association. The drowsiness classifier model C is jointly trained
with both real and synthetic features and pushes G to generate more authentic samples and in turn improve the classifier performance.

and ‘Moderately/Extremely drowsy’. The training dataset
is highly unbalanced with plenty of ‘Alert’ samples, while
the ‘Slightly drowsy’ and ‘Moderately/Extremely drowsy’
classes are quite sparse. Such an unbalanced training set
typically results in a biased classifier model. To alleviate
this issue, we propose a novel GAN [ 1] based augmentation
model. A GAN is typically composed of an upsampling
generator network for synthesizing artificial samples of a
particular domain from random noise and a downsampling
discriminator that learns to detect synthetic samples. These
antagonistic objectives help the generator learn useful fea-
tures of the target domain and refine synthesis quality.
However, majority of the research in this domain involves
using GANs to generate synthetic images [!2, 8], where
synthesis quality is either visually inspected or evaluated
using pre-tuned inception [13] based metrics like inception
score[14] and FID[15]. This is inapplicable in our case as
we generate 1800-dimensional feature vectors, in the same
way as described in [4], that are neither human readable nor
consistent with the expected input of the inception model.
As a potential solution, we train our base classifier network
(for drowsiness classification) jointly with the GAN, with its
training set directly augmented with the generated samples
from a particular training iteration. Once training finishes, the
classifier is detached and deployed for drowsiness prediction.

2.1. Proposed GAN Architecture

Our framework consists of a generator (G), a discriminator
(D) and a classification (C) networks that are trained jointly.
When provided with a latent vector and a target drowsiness
class, G is trained to generate synthetic drowsiness vectors
that fit the distribution of the associated target class. C is
trained with real and synthetic samples, jointly with G and D,
and is tasked with learning representations for final drowsi-
ness prediction from real-world test samples.

Specifically, G takes as input a 100-dimensional noise
vector z, sampled from a gaussian distribution [12], and a
3-dimensional target class vector ¢ to condition the gener-
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ated samples towards a particular drowsiness state [16]. To
match input dimensions, ¢ is embedded in a 100x3 space
and concatenated channel-wise with z. This concatenated
tensor is then passed through a set of 2D convolutional and
dense layers with leaky ReLU [17] activation, generating a
1800-dimensional synthetic sample G(z, ¢). This sample is
reshaped to 18 100 and passed through D to get predictions
based on its realness and target class association. Similar to
G, D is constructed with convolutional layers and two dense
layers with sigmoid and softmax activations for realness
(Dsre) and class association (D.;s) predictions respectively.
Additionally, we train the classification network C with
real training samples, augmented using synthetic samples
G(z, ¢), and use it to predict the drowsiness class of each
input sample. Similar to D, C reshapes the input tensor x to
18x100 and passes it through convolution layers and then
uses global average pooling for dimensionality reduction
and softmax activation for drowsiness prediction C(x). An
illustration of the proposed framework can be seen in Fig. 1.

2.2. Loss Function

Adversarial Loss: As done typically[ 1], we set D’s objective

to distinguish between real and synthetic samples as:
src(G(Zia C)))]

Zlog are(Xi)) Zlog
(1)

where x; is a real sample from drowsiness class ¢, z; a ran-
dom latent vector, and N the batch size. G is then trained to
synthesize realistic samples using a frozen D’s predictions as:

Z iOg src

Intuitively, D’s weights are leveraged to tune G’s hallucina-
tions to match the distribution of real samples from class ¢
and produce more realistic samples as training progresses.
Classification Loss: To ensure the target class association ¢
of a synthetic vector G(z, ¢) is preserved, we add a classifica-
tion loss L that uses D’s softmax prediction D as:

G(zi,¢))) 2
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Table 1: Class-wise performance of our drowsiness classifier (C) with and without GAN based joint training. We evaluate model performance in terms of
Accuracy and ROC-AUC. Best viewed in color.

Model Alert Slightly Mod/Extremely Macro
Drowsy Drowsy Average
| Classifier only (wo/ GAN) [4] [ 0.747,0901 | 0.481,0.772 |  0.820,0.936 [ 0.683,0.869 |
| Joint training from scratch (proposed) | 0.841,0.905 | 0.497,0.785 |  0.813,0.956 [ 0.717,0.882 |
Joint training from snapshot, unfreeze after 0 epochs (proposed) | 0.737,0.945 | 0.540,0.754 0.849,0.894 0.709,0.865
Joint training from snapshot, unfreeze after 25 epochs (proposed) | 0.762,0.950 | 0.527,0.767 0.829,0.902 0.706,0.873
Joint training from snapshot, unfreeze after 50 epochs (proposed) | 0.828,0.901 | 0.450,0.769 0.835,0.952 0.704,0.874
Joint training from snapshot, unfreeze after 75 epochs (proposed) | 0.821,0.900 | 0.455,0.767 0.839,0.947 0.705,0.871

N 3
Les = — Z 2(01)3 log(Dcls (G(Zia c))j)

i=1 j=1

3

where j denotes the index of association of the target and pre-
dicted class labels.
Correlation Loss: To generate more variations in the syn-
thetic vectors, while preserving their “realness”, we add an
additional correlation loss L, on top of Lg. After each it-
eration of generator training, we calculate the Pearson corre-
lation between real samples x and synthetic samples G(z, ¢)
for a particular drowsiness class ¢. Ideally, the correlation
should be as close to 1 as possible, so we calculate L., as:
1 SN Cov(G(zi, 0);, %)
N Z 0G(z,.¢)0%; @)
i—1 G(zi,¢)Ox;
where Cov denotes covariance between two vectors and o the
standard deviation for particular training batch of size V.
Joint Optimization Loss: Taking inspiration from Cycle-
GAN [18], we jointly train C along with G and D using both
real and synthetic vectors. However, unlike CycleGAN [ 18],
we formulate C’s task not to reconstruct the input but to pre-
dict the level of drowsiness from other real feature vectors.
After each iteration of GAN training, a set of synthetic vec-
tors for the two non-alert classes are generated by feeding G
different noise values and their corresponding target classes.
These synthetic vectors are then added to our original drowsi-
ness training set to augment the target sparse classes and bal-
ance the training distribution. We train C with the augmented
data using a categorical cross entropy loss as shown below:

N 3
Lopt ==Y > (4i);log(C(xy);) )

i=1 j=1
where N is the batch size for training the classifier, x a real
input sample and y its actual association for the drowsiness
class j. This ground truth class association is compared with
C’s prediction C(x;) for loss computation.
Full Loss: The full training objective L of our framework is
calculated as the weighted sum of the different losses:

L= LG + )\chls + )\2Lcorr + >\3Lopt

We tune the loss coefficients A1, A2, and A3 empirically.

Lcorr =1-

(6)

2.3. Training Regimes
Joint training from scratch: In this regimen, we train all
three models (generator G, discriminator D and classifier C)

from scratch, initializing their weights randomly from a uni-
form distribution[19]. In this scenario, C learns represen-
tations from noisy synthetic vectors generated in the early
epochs, before they mature in the later stage of G’s training.
Joint training from snapshot: Inspired by [20], we pre-train
C solely on real drowsiness vectors and save the snapshot that
produces the best validation accuracy. During training of the
joint framework, C is initialized from this snapshot while G
and D are again initialized randomly. Starting from a frozen
set of weights, C can be unfrozen at different points of train-
ing depending on the desired maturity of G’s features.

3. EXPERIMENTS

Training Details: For training our model we use the shift-
worker dataset from[4]. Each sample is a representation of a
10-second input video clip and contains a single drowsiness
label. Each frame of the input video clip is processed with the
Affdex SDKJ[5], which outputs a 18-dimensional descriptor,
consisting of estimates of head-pose, facial expressions and
emotions of the driver. This sequence of descriptors is resam-
pled into a 18 x 100-dimensional input vector. After pruning
samples with missing features, we ended up with 20,126
(Alert: 10,639, Slightly Drowsy: 3,650, Mod/Extremely
Drowsy: 5,837), 2,235 (Alert: 1,182, Slightly Drowsy: 405,
Mod/Extremely Drowsy: 648) and 7,427 (Alert: 4,016,
Slightly Drowsy: 1,247, Mod/Extremely Drowsy: 2,164)
samples for training, validation and testing respectively. As
evident from these numbers, both the drowsy classes are
sparsely populated compared to the alert class in all three
datasets. We aim to mitigate this bias by synthetically aug-
menting these classes during training.

We train our classifier (C), generator (G) and discrimina-
tor (D) for 100 epochs with a batch size of 16 samples using
the Adam optimizer[22] with a base learning rate of 10~*.
The learning rate for C is decayed gracefully using cosine
scheduling to prevent overfitting while it remains constant
for G and D. We apply Dropout[23] and label smoothing[ 4]
during training as regularization. For training the jointly opti-
mized model (Section 2.1), we empirically set Aj, Ao and A3
as 1, 1 and 10 respectively. We build all models using Tensor-
flow [24] and Keras [25] and train them on a NVIDIA Tesla
V100 card. The classifier snapshot that generates the best
validation accuracy during training is used for evaluation.
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Fig. 2: tSNE visualization: As can be seen, the drowsiness classes are deeply entangled (left) but synthetic vectors stretch the manifold pushing real samples
further away from each other (right), similar to [21]. Consequently, jointly training the classifier network with the GAN improves its performance.

Results: To evaluate classifier performance during test-
ing, we use the accuracy and ROC-AUC metrics, similar
to [4]. We gauge the effectiveness of the synthetic features
generated by G by comparing the jointly optimized C with
the stand-alone classifier (i.e. C trained without GAN[4]).
If the samples synthesized by G are realistic, they should
mitigate the dataset bias during joint training and tune C’s
representations to better classify test samples from all three
classes. Along with initializing C from scratch for joint train-
ing, we also try fine-tuning it from a pre-trained snapshot, as
mentioned in Section 2.3. To estimate the optimal unfreezing
point of C’s weights, we try fine-tuning it after 0, 25, 50 and
75 epochs. The results can be seen in Table 1.

As expected, training the classifier with GAN based aug-
mentation improves its performance for both the drowsy
classes when compared with stand-alone training (i.e. with-
out GAN). Surprisingly, the joint training also improves
C’s performance on the Alert class, suggesting well sepa-
rated boundaries between all three classes are formed when
synthetic samples are added during training. The synthetic
samples can stretch the feature manifold[21] and push real
samples from different classes further away from each other,
as visualized in Figure 2, improving inter-class separation
and consequently model performance.

Additionally, we find joint training the classifier C from
scratch to be slightly better than initializing it from a pre-
trained snapshot. When trained from scratch, C first learns
representations from noisy samples generated by G dur-
ing the initial training epochs, which further regularizes its
weights[26, 27]. Then as training progresses, D pushes G to
improve the quality of the generated samples, helping C to
better learn the authentic representation of the drowsy classes.
However, when fine-tuning from a snapshot, C’s weights are
already tuned to separate authentic samples from the three
classes. Therefore, when unfreezing early (i.e. after O or 25
epochs), the noisy synthetic samples from the early iterations
actually deteriorate its performance on the drowsy classes.
When unfreezing late (i.e. after 75 epochs), C does learn

Table 2: Ablation study results: we ablate each loss component of the
model to evaluate their contribution.

l Model Macro Avg. Accuracy | Macro Avg. ROC-AUC
wo/ La 0.676 0.861
wo/ Les 0.680 0.860
wo/ Leorr 0.681 0.863
w0/ Lopt 0.673 0.860
Full model 0.717 0.882

better features from the matured samples but does not experi-
ence the full variance produced by G through the whole 100
epochs. Thus unfreezing midway (50 epochs) can be a good
option, if not training from scratch.

Ablation Study: To further analyze the contribution of
each component, we ablate them individually from our GAN
framework. The results, as shown in Table 2, suggest the ad-
versarial (L) and joint optimization (L) losses to be key
in generating realistic synthetic samples while the classifica-
tion (L) and correlation (L.,,) losses act as regularizers.
The overall best performance is, of course, achieved by the
full model with all the losses combined.

4. CONCLUSION
In this paper, we focused on the problem of building a driver
drowsiness detection system. Building such systems are chal-
lenging, in part due to real-world drowsy driving datasets
being unbalanced. We alleviated the class imbalance prob-
lem by introducing a GAN based joint training approach to
synthesize examples of sparse classes directly in the feature-
space. Our GAN-based framework simultaneously generates
realistic examples of sparse drowsy classes while using the
generated samples to improve the performance of a separate
drowsiness classifier. We demonstrated the effectiveness of
our approach on a challenging drowsiness dataset [4], which
suffers from severe class imbalance. The GAN based joint
training not only boosts classifier performance for the sparse
classes (Table 1) but improves inter-class separation between
all three classes (Fig. 2). As future work, we plan to extend
our framework to address dataset imbalance in other domains.
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