Synthesize & Learn: Jointly Optimizing Generative and Classifier Networks for Paper # 4321

Improved Drowsiness Detection

\$ SureStart

:) Affectiva

Sandipan Banerjee¹, Ajjen Joshi¹, Ahmed Ghoneim¹, Survi Kyal¹, Taniya Mishra²

¹Affectiva Inc., Boston, USA

²SureStart Inc., New York, USA

OVERVIEW CONTRIBUTIONS

- Equipping vehicles with robust, automatic, real-time systems that can estimate a **driver's drowsiness state** from their **facial signals** can have potentially life-saving impact.
- Training deep learning systems based on real-world drowsy driving behavior can enable the development of such systems.
- However, real-world drowsy driving datasets are unbalanced, due to the sparsity of drowsy driving events, posing a challenge to building accurate drowsiness prediction systems.
- We attempt to **alleviate the class imbalance** problem by using GANs to synthesize examples of sparse classes directly in the feature-space.
- Our GAN-based framework simultaneously generates realistic examples of sparse drowsiness classes, and learns a separate drowsiness classifier using the generated samples.
- We validate this approach in a real-world drowsiness dataset,
 where we demonstrate a classifier trained using this approach
 outperforms a stand-alone classifier trained without any augmentations.

DATASET

- We used the naturalistic drowsiness dataset presented in [1], consisting of 1450 5-minute videos of real-world driving behavior annotated into 4 drowsiness intensity classes: 'Alert', 'Slightly Drowsy', 'Moderately Drowsy', 'Extremely Drowsy'.
- We used the **Affdex SDK** [2] to generate a low-dimensional embedding for every frame, based on the driver's **head-pose**, **facial expressions** and **emotions** (anger, disgust, joy, surprise, valence).
- The dataset is **highly skewed** towards the 'Alert' class, with only ~3% of the data in the extremely drowsy classes.

PROPOSED GAN FRAMEWORK

Architecture: Our GAN framework is composed of generator G and discriminator D networks jointly optimized for improving the drowsiness classifier C during training. During testing, only C is used.

- (1) G: takes a 100-D noise vector & an embedded target class vector, and generates an 1800-D synthetic sample.
 (2) D: takes the synthetic sample and generates predictions based on its realness and target class association.
 (3) C: is trained with real data, augmented with synthetic samples, and used to estimate drowsiness of validation set.
- Loss Function: The full loss is a weighted sum of following:
- Affdex SDK

 Real Features
 SDK

 Synthetic Features
 Input Noise
 Input Noise
 Target Class

 Real Features

 G

 Conv Global Fully Drowsy'
 Validation
 Target Connected
 - (1) L_G: D's weights are leveraged to tune G's hallucinations to match distribution of real data and produce realistic samples as training progresses.
 - (2) L_{cls}: Ensures the target class association of a synthetic vector is preserved, using cross entropy over **D**'s softmax prediction.
 - (3) L_{corr} : To **generate variations** in synthetic data, while preserving "realness", we calculate the Pearson correlation between real samples and synthetic samples for a particular drowsiness class. Ideally, the correlation should be as close to 1 as possible.
 - (4) L_{opt} : Formulated as the cross-entropy over C's predictions of the level of drowsiness. On top of the explicit task of improving drowsiness prediction, this joint optimization loss **implicitly refines the quality of the generated synthetic samples**.

EXPERIMENTAL RESULTS

- **Training modes**: Along with initializing C **from scratch** for joint training, we also try fine-tuning it from a **pre-trained snapshot**. To estimate the optimal unfreezing point of C's weights, we fine-tuning it after 0, 25, 50 and 75 epochs.
- **GAN-based augmentation**: improves C's performance metrics (accuracy, ROC-AUC) for both the drowsy classes.
- Well separated class boundaries: Surprisingly, joint training also improves C's performance on the Alert class, when synthetic samples only for the drowsy classes are used in training.

Model	Alert	Slightly	Mod/Extremely	Macro
Model		Drowsy	Drowsy	Average
Classifier only (wo/ GAN) [4]	0.747,0.901	0.481,0.772	0.820,0.936	0.683,0.869
Joint training from scratch (proposed)	0.841,0.905	0.497,0.785	0.813,0.956	0.717,0.882
Joint training from snapshot, unfreeze after 0 epochs (proposed)	0.737,0.945	0.540 ,0.754	0.849 ,0.894	0.709,0.865
Joint training from snapshot, unfreeze after 25 epochs (proposed)	0.762,0.950	0.527,0.767	0.829,0.902	0.706,0.873
Joint training from snapshot, unfreeze after 50 epochs (proposed)	0.828,0.901	0.450,0.769	0.835,0.952	0.704,0.874
Joint training from snapshot, unfreeze after 75 epochs (proposed)	0.821,0.900	0.455,0.767	0.839,0.947	0.705,0.871

- **Feature visualization**: The synthetic samples stretch the feature manifold and push real samples from different classes away from each other, improving inter-class separation.
- Initializing C from scratch is better: During the initial epochs, C learns representations from noisy samples generated by G. As training progresses, D improves G, helping C to gradually learn the authentic representation of the drowsy classes.
- **Fine-tuning C from a snapshot**: When unfreezing early (0 or 25 epochs), the noisy synthetic samples from the early iterations distort C's representations. When unfreezing late (after 75 epochs), C learns better features from mature samples but does not experience the full variance produced by G through the whole 100 epochs.
- Ablation Study: We ablate each model component individually to gauge their contribution.
 L_G and L_{opt} are key in generating realistic synthetic samples while the L_{cls} and correlation L_{corr} losses act as regularizers.

Model	Macro Avg. Accuracy	Macro Avg. ROC-AUC
wo/ L_G	0.676	0.861
wo/ L_{cls}	0.680	0.860
wo/ L_{corr}	0.681	0.863
wo/ L_{opt}	0.673	0.860
Full model	0.717	0.882

[1] A. Joshi, et al. "In-the-wild drowsiness detection from facial expressions," in Human Sensing and Intelligent Mobility Workshop, IEEE Intelligent Vehicles Symposium, 2020

[2] D. McDuff, et al. "Affdex sdk: A cross-platform real-time multi-face expression recognition toolkit," in CHI Extended Abstracts, 2016